On Chebyshev Polynomials of Matrices
نویسندگان
چکیده
The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known properties of Chebyshev polynomials of compact sets in the complex plane. We also derive explicit formulas of the Chebyshev polynomials of certain classes of matrices, and explore the relation between Chebyshev polynomials of one of these matrix classes and Chebyshev polynomials of lemniscatic regions in the complex plane.
منابع مشابه
A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملRecurrent Construction of MacWilliams and Chebyshev Matrices
We give two recursive expressions for both MacWilliams and Chebyshev matrices. The expressions give rise to simple recursive algorithms for constructing the matrices. In order to derive the second recursion for the Chebyshev matrices we find out the Krawtchouk coefficients of the Discrete Chebyshev polynomials, a task interesting on its own.
متن کاملNumerical Solutions of Monic Chebyshev Polynomials on Large Scale Differentiation
In this paper, a new formula of the spectral differentiation matrices is presented. Therefore, the numerical solutions for higher-order differential equations are presented by expanding the unknown solution in terms of monic Chebyshev polynomials. The resulting systems of linear equations are solved directly for the values of the solution at the extreme points of the Chebyshev polynomial of ord...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملGeneralized Bivariate Lucas p-Polynomials and Hessenberg Matrices
In this paper, we give some determinantal and permanental representations of generalized bivariate Lucas p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Lucas p-polynomials are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas ppolynomials, Chebyshev polynomials of the first kind, Jacobsthal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2010